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A neural network for storing individual patterns in limit cycles 
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Received 15 March 1991 

Abstract. A neural network model in which individual memories are stored in limit cycles 
is studied analytically and numerically. In this model there are two kinds of interactions: 
a Hopfield-like term that tends to stabilize the system in a memorized state and a second 
term with a time delay that acts to induce transitions between a memorized state and its 
complement state. For a proper choice of the values of the parameters, this model exhibits 
limit cycle behaviour in which the overlap with a target pattern oscillates in time. An 
asymmetrically diluted version of the model is studied analytically in the limit of extreme 
dilution. We find that the model with cycles performs better than a similarly diluted version 
of the Hopfield model. The performance of the fully connected model is studied by 
numerical simulations. We find a behaviour qualitatively similar to that of the dilute model. 
The model with cycles is found to perform better than the Hopfield model as a pattern 
classifier if the memory loading level and the degree of corruption of the input patterns 
are high. 

1. Introduction 

During recent years, neural networks performing computations through attractors have 
received a lot of attention (for a review see Amit 1989). These networks consist of a 
large number of simple computing elements (neurons). The computation to be per- 
formed is coded in the synaptic interconnections among the neurons. The time evolution 
of the network is governed by an assumed dynamics of individual neurons. Starting 
from an initial state, the network evolves in time until a time-persistent state (an 
attractor of the underlying dynamics) is reached. This stationary state represents the 
result of the computation. In most of the networks studied so far, the attractors used 
in the computation are fixed points. In a large class of neural network models of 
associative memory, the interactions are chosen so as to make the states representing 
the stored memories fixed points of the dynamics. Any initial state close to one of the 
memories, representing partial knowledge of the stored information, converges under 
the dynamics to the memory state. Thus, retrieval of the full information is achieved, 
These models also act as pattern classifiers. All initial states within the basin of attraction 
of a particular memory are classified as belonging to the same group. The Hopfield 
model (Hopfield 1982, 1984) of associative memory is the simplest model of this type. 

A general dynamical system involving a large number of interacting variables may, 
of course, exhibit attractors other than simple fixed points. In this paper, we consider 
a neural network in which computations are performed with limit cycles. The idea of 
using time-dependent states in neural computing has received some attention in the 
past (Peretto and Niez 1986, Sompolinsky and Kanter 1986, Kleinfeld 1986, Dehaene 
el al 1987, Buhman and Schulten 1987, Mori et al 1989). The model we consider here 
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is similar to those constructed by Sompolinsky and Kanter (1986) and by Kleinfeld 
(1986) for the recognition and associative recall of temporal sequences and cycles of 
patterns. In  these models the neurons are assumed to be two-state variables, represented 
by lsing spins. Two different sets of synaptic interactions among the neurons are 
assumed to exist. The first set is the usual Hopfield type, tending to stabilize the system 
in a memory state. The second set of interactions tends to induce transitions from one 
memory state to another. A time delay associated with the second set of interactions 
causes the system to stay in a memory state for some time before making a transition 
to another one. The model we study here is one in which the second set of interactions 
tends to induce transitions from a memory state to its complement state which is 
obtained by reversing the signs o f  all the lsing spins in the memory state. The model 
and its dynamics are described in detail in section 2. Both sets of interactions in this 
model are determined by the generalized Hebb rule (Hopfield 1982) and are, therefore, 
symmetric. An interaction parameter belonging to the second set differs from the 
corresponding one in the first set in its sign, its magnitude and in the assumed time 
delay T associated with its action. If the strength of the second set of interactions is 
sufficiently large, then the network, when started off from a state close to one of the 
memory states, goes into a limit cycle in which the overlap of the instantaneous spin 
configuration with the chosen memory state oscillates in time with a period -21, and 
the overlaps with all other memory states remain close to zero. This way of embedding 
individual patterns in limit cycles was briefly discussed by Sompolinsky and Kanter 
(1986), but they did not present any analysis of the behaviour of this model. 

The synaptic interactions in the model we consider are not instantaneous. For this 
reason, the methods of equilibrium statistical mechanics, which have been used exten- 
sively to analyse the behaviour of many Hopfield-type models (Amit 1989), cannot be 
used to study its properties. An asymmetrically diluted version of this model can be 
studied analytically in the limit of extreme dilution by using a method developed by 
Derrida ef a /  (1987). This calculation is described in section 3. We consider a 'zero- 
temperature' (deterministic) dynamics and randomly chosen memories. The behaviour 
of the model is then characterized by two parameters, A and a. The first parameter A 
measures the strength of the second set of interactions relative to the first, Hopfield-like, 
set. The parameter a is the ratio between the total number of stored memories and 
the average number of neurons connected to a particular one. The calculated 'phase 
diagramme' in the A - a  plane exhibits all the qualitative features found by Gutfreund 
and Mezard (1988) in a similar calculation on networks generating temporal sequences 
and cycles of patterns. For any A > 0, the network is found to exhibit the desired cyclic 
behaviour if a,,,;"(A j < a < e M x ( A ) ,  with am," = 0 for A > 1. The values of a.,,, for A 
close to unity are found to be larger than a c ,  the maximum storage capacity of a 
similarly diluted version of the Hopfield model. This calculation, thus, shows that the 
maximum storage capacity of a network in which the memories are stored in limit 
cycles is higher than that of one in  which the memories are stored as fixed points. 

I n  section 4, we describe the results obtained from numerical simulations of the 
behaviour of the fully connected model. We find results which are qualitatively similar 
to the predictions of the analytic calculation on the dilute model. The numerical values 
of quantities such as a,;,,(A) and amax(,+), however, turn out to be quite different from 
the values obtained from the analytic calculation. We also find that this model performs 
better than the Hopfield model in correctly classifying corrupted input patterns if the 
memory loading level a and the degree of corruption o f  the input patterns are high. 
The retrieval performance of this network is, however, not very good. For large values 
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of a, the amplitude of oscillations of the overlap of the instantaneous spin configuration 
with a target pattern is rather small. This model, thus, would be useful as a pattern 
classifier where the primary objective is to identify correctly the class to which the 
input pattern belongs, rather than as an associative memory where the emphasis is on 
a correct retrieval of the complete information from partial knowledge. 

In section 5 ,  we summarize the main results obtained from this study. 

2. The model 

We consider a network which consists of N neurons, represented by the k ing  variables 
ut, i = 1,2, .  . . , N. A number, p ,  of random binary patterns, [:, i = 1,2, . . . , N ;  CL = 
1,2 , .  . . , p ,  are  stored in the network. Two different sets of synaptic interactions among 
the neurons are assumed to exist. The  first set is the usual Hopfield type, which stabilizes 
the system in a memory state. The second set of interactions tends to induce transitions 
from a memory state to its complement state which is obtained by reversing the signs 
of all the k ing  spins in the memory state. A time delay associated with the second set 
of interactions causes the system to stay in a memory state for some time before making 
a transition to the complement. We assume a deterministic (zero-temperature) dynamics 
defined by the  following update rule: 

u,( I + 1) = sign(h,( 1)) (1) 

where 1 represents a discrete ’time’ label and  h, ( t )  is the local field acting on the ith 
spin at time 1. The updates may be  synchronous o r  asynchronous. The local field h,( 1)  
is defined as 

where A > 0 is a control parameter, T represents a time delay associated with the second 
set of interactions and the interaction matrix J ,  has the Hebb rule form 

The first set of interactions acts t o  stabilize the system in a memory state whereas the 
second set tends to induce transitions between a memory state and its complement 
state. The behaviour of this model may be  analysed easily in  the limit N + m, a = p /  N + 

0. Let us assume that the system has settled down into a memory state, U, = [y at time 
t = 0. Configurations at earlier times are assumed to be uncorrelated with any memory 
state. Thus, for 1 i T, the second term in equation (2)  does not have much of an effect 
and  the system remains in the memory state U, = 5:”. At time f = T, the local field acting 
on the ith spin is given by 

Thus, i f  A > 1, the system makes a transition to the complement state, uj = -@, at 
time 1 = T. This state again flips back to the original memory state at time f = 2.r and, 
thus, the system continues to oscillate in a limit cycle in which the overlap of the spin 
configuration with the memory state {g?) varies periodically between + I  and -1 with 
a time period T - 2 7  and overlaps with other memories remain close to zero. There 
are p such cycles, corresponding to the p different memories. If the system is started 
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off in a configuration close to one of these memories or its complement, then it goes 
into the corresponding limit cycle. This network, therefore, functions as a pattern 
classifier and as an associative memory in which each memorized pattern is stored in 
a limit cycle. Note that in the present model, a memorized pattern and its complement 
correspond to the same attractor. In contrast, a pattern and its complement represent 
two different fixed points in the original Hopfield model. 

If the parameter U measuring the loading level of the network is of order unity, 
then the ’noise’ term arising from the interference of non-condensed memory states 
cannot be neglected and the simple analysis described above breaks down. Analytic 
and numerical studies of the behaviour of such models are described in the next two 
sections. 

V Deshpande and C Dasgupta 

3. Analytic results in the limit of extreme dilution 

In this section, we consider an asymmetrically diluted version of the model defined in 
the preceding section. This model can be solved exactly in the limit of extreme dilution 
by using methods developed by Derrida et a1 (1987) and by Gutfreund and Mezard 
(1988). In the model we consider, each interaction J, is multiplied by a quenched 
random parameter C,, so that the local field at site i at time f is given by 

(5 )  hj(t)  =E C,J,(q(t) - hgj(r - T)). 
i 

The probability distribution for each independent random variables C, is assumed to 
have the form 

( C 
P(C,) =- S(C,, - 1)+ 1 -- S(C,) .  N 

We consider Cy and C,, to be independent variables, so that the dilution is asymmetric. 
In this calculation, we assume a different normalization for the interaction parameters 
J,, which are now defined as 

The memory loading level a for this model is defined as U = p /  c where p is the number 
of patterns stored in the network and c, by definition, is the average number of spins 
connected to a particular one. We assume a parallel synchronous dynamics governed 
by the update rule 

u f ( f+ l )=* l  with probability [l+exp(T2h,(f)/T)]-‘  (8) 

where T i s  the ’temperature’. This update rule reduces to the deterministic one defined 
in equation (1) in the limit T+O. 

It was pointed out by Derrida e f  a1 that the dynamics of models of this type can 
be solved exactly in the extreme dilution limit N- tm,  C+w, C / N + O ,  C<< In N. 
Similarly diluted versions of a number of models for generation and recognition of 
temporal sequences and cycles of patterns were solved by Gutfreund and Mezard 
(1988). Following these calculations, we consider a situation where the system has a 
macroscopic overlap, m*”( f ) ,  with a particular pattern, {cy}, and microscopic overlaps 
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with all other patterns at time t. Let m''o(t-r) be the overlap with the same pattern 
at the earlier time, ( I  - r). These overlaps are defined as  

(9) 

where the brackets (. . .) denote a thermal as  well as configurational average. The local 
field at the ith spin at time f is given by 

m'"(f) = (.$>U,( f))/  N 

K ,  

h, ( f) = 1 J,," (n," (1) -An,"( f - 7)) (10) 
e = ,  

where j , ,  (I = 1,2, .  . . , K ,  denote the spins connected to the ith one with non-zero 
interactions. As pointed out by Derrida el a1 (1987), the correlations among the spins 
{U,-} may be neglected in the limit of extreme dilution considered here. The probability 
distribution for h , ( f )  may then be calculated from the known probability distributions 
for individual spins: 

In equations ( I  l),  we have dropped the superscript po of m for notational convenience. 
From these equations, it follows that 

P ( u , - ( f )  = u,"(f - 7 ) )  = ( 1  + m( t)m(t - 7 ) ) / 2  

P ( u , - ( f )  = -u , - ( f - r ) )  = (1  -m(t)m( t - 7 ) ) / 2 .  

In defining these probabilities, we have assumed that correlations existing between 
the spin configurations {u,(f - r ) }  and {u?(f)} are only those arising from their assumed 
overlaps, m( f - T )  and m( r ) ,  with the memory state 15:"). The validity of this assumption 
will be discussed later. 

Using the definition, equation (7), of the interaction matrix J,, and the probabilities 
defined in equations ( 1 1 )  and (12), it is straightforward to show that the local field 
h,( I )  can be written as 

h,(t)=5>(Xl-AXZ+X3) ( 1 3 )  

where the average values of X1 and X2 are m ( f )  and m(f  - T ) ,  respectively, and X3 
may be treated as a Gaussian random variable with zero average and a variance equal 
to 

IY = a(] + A 2  - 2Am( t ) m (  I - T ) ) .  (14) 

Combining this information with the update rule, equation (8), we obtain the following 
equation describing the time evolution of the overlap m :  

m( f + 1 )  = -exp(-y2/2) tanh[(m( r)-Am(f - ~ ) + J w y ) / T l .  (15 )  

The random Gaussian variable y in equation (15) represents the 'noise' produced by 
the interference of the uncondensed patterns (.$?I, + # p a .  In the deterministic, T+O 
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limit, equation (15) becomes 

V Deyhpande and C Dasgupfa 

m ( f  + 1) = Erfl(m(f)-Am(f - r ) ) / J ( 2 w ) ] .  (16) 

These equations, together with the initial condition, m ( t )  = Q, - r<  f S O ,  determine 
the values of m (  1 )  at all times I > 0. 

We have studied numerically the time evolution of m ( f )  given by equation (16). 
We find that for O <  A < I ,  there exists a critical value, a,,,,"(A), of the loading level a 
such that for a>a,,,(A), the overlap m ( f )  shows oscillations with a period - 2 ~ .  
Typical results for the time evolution of m ( f )  for A =0.8, T =  IO, Q=O.97 and two 
different values, 0.25 and 0.75, of a are shown in figure 1. These results show that the 
internal noise generated by the microscopic overlaps with the non-condensed patterns 
may cause transitions between a memory state and its complement even if the parameter 
A is less than the critical value ( = I )  needed for cyclic behaviour in the a - 0  limit. 
The variation of a,,,," with A for A < 1, calculated with Q = 0.98, is shown in the 'phase 
diagram' of figure 2. The value of a,,, is equal to zero for all A > 1. As can he seen 
in figure 1, the amplitude of oscillations of m ( f )  decreases initially and then settles 
down to a constant value which decreases as a increases. The asymptotic value of this 
amplitude, m,, may be obtained from the self-consistent equation 

mo= Erf{(l + A ) m 0 / J [ 2 a ( l  +A2+2Ami)]]. (17)  

This equation is derived from equation (16) by noting that in the steady state, m ( t J  = 
- m ( t o - T ) =  m,,  where f, refers to a peak of m(t). The amplitude m, asymptotically 
approaches a non-zero value if the m, = 0 solution of equation ( 1 7 )  is unstable. This 
happens if a < awax(A) where the maximum storage capacity amrr i s  given by 

This result for amax is the same as  that found by Gutfreund and Mezard (1988) for a 
model in which all the patterns are embedded in a single-limit cycle. The evolution 

time 

Figure I .  Numerical solution of  equation (16) showing the time evolution of m(r1 for the 
diluted model with A = 0.8, 7 = 10 and Q =0.97 far U =0.25 (full curve) and 0.75 (broken 
curve). 
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4 

0 5  I O  
a 

Figure2 Phasediagramin the(& e) plnneindicatingtheregion wherelimitcycle behaviour 
with a finite amplitude is possible. T h e  initial overlap Q was taken to be 0.98. The decrease 
in the amplitude of oscillation of m ( 1 )  with the increase in loading level a of the network 
Cd" be observed. 

equations of the overlaps and the values of a,?,(A) are, however, different in the two 
models. The maximum storage capacity of the present model near A = 1 is two times 
that of a similarly diluted version of the Hopfield model (A=O). Thus, we find that 
the storage capacity of the network is increased if the patterns are stored as limit cycles 
instead of as fixed points. 

In figure 3 we have shown the variation of the amplitude muwith the memory-loading 
parameter U for A = 1.2. The LY dependence of the self-consistent value of the memory 
overlap obtained for the dilute Hopfield model (A = 0) is also shown in the same figure 

HOPFIELD :"I LIMIT CYCLE 

06 
d 

E 

02 O 4 I  , , \. :\ I 2  

0 
0 2  0 4  0.6 0 8  I O  

a 
Figure 3. Variation of the amplitude m,, with the loading level 01 for the dilute model with 
cycles (squares) for A = 1.2. The dependence of the retrieval overlap m on CI for the dilute 
Hopfield model is also shown (dots) for comparison. 
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for comparison. It is clear that the model with cycles performs better than the Hopfield 
model for all values of a. It should, however, be noted that since m, decreases 
continuously with a, the retrieval performance of the model with cycles is not very 
good for large values of a .  Thus, this model would be more useful as a pattern classifier 
than as a pattern retriever. 

The reason for the increased storage capacity of the limit cycle model is not difficult 
to understand. It is closely related to the assumption made earlier (in deriving equation 
(12)) that correlations between the spin configurations at time f and time ( f  - 7) are 
only those arising from their overlaps, m ( f )  and m ( f - T ) ,  with the selected memory 
state (R3. If this assumption is correct then the fact that m ( l o ) = - m ( t , - ~ )  in the 
steady state does not mean that u,(fo) = -U,( f , -  T)  for all i. As a result, the noise terms 
(arising from the interference of non-condensed patterns) associated with the instan- 
taneous and the time-delayed interactions do  not always add in phase. This effect 

~ ~ ( l f h ) ~ ,  to the value, (1+A2+2Am2(1,)), used in equation (17).  The signal term, 
( l + A ) m ( f , ) ,  appearing in the argument of the error function in equation (17) is 
independent of the nature of correlations between the states at time f, and (io- 7). 

Thus, in the limit cycle model, the 'signal term' is increased by the factor (1 + A ) ,  but 
the noise is increased by a smaller factor, the difference between the two factors being 
large if m( f o )  is small. The net effect is a relative suppression of the noise, resulting 
in an increase in the memory storage capacity. If, instead, we make the assumption 
of maximal correlation between the spin states at times f o  and ( t o -  T), i.e. if we assume 
that uj(fo) = -u,(t,- T) for all i, then the variance of the noise distribution would have 
the maximum possible value, w = (1 + A ) * .  The self-consistent equation that determines 
amaX(A) would then be identical to that for the diluted Hopfield model, which is 

cycle model depends crucially on  the nature of correlation between the states separated 
by the time delay T. If these two states are perfectly correlated, i.e. if one is the 
complement of the other, then the values of a,,,(A) and mu(a, A) would be the same 
as those for the dilute Hopfield model ( A  = 0) for all values of A. Any reduction between 
the correlations between these two states would cause an increase in the values of 
amax(A) and mo(a, A ) .  It is difficult to determine exactly the amount of correlation 
actually present. We have tried to derive an evolution equation, similar to equation 
(15), for the overlap q ( f , ~ ) = ( l / ~ ) ~ ~ u ~ ( f ) ~ ~ ( f - ~ ) .  We find that the equation for 
q ( f ,  T) involves the overlap, q(f, 2 T ) ,  between the spin configurations at times f and 
( f  -27). This leads to a hierarchy of equations which does not close. In the absence 
of any exact result, the assumption of minimal correlation is plausible if the time delay 
7 Ib C I I U ~ C , ,  L U  "C rargc. w c  IlVLC I l C l C  u,a, ,,IC C U I I L I I I U U U S  LllllC U y l l d l l l l L b  U1 LI1G UIIULG" 

Hopfield model ( A  = 0) has been analysed exactly by Kree and Zippelius (1987). They 
find that the time-persistent p a n  of the spin autocorrelation function in the steady 
state is less than unity for all values of a and T (including T=O) in the retrieval 
'phase', and that it approaches the value m i  as a + a, = 2/w at T = 0. They also find 
that the relaxation time characterizing the decay of the autocorrelation remains finite 
for all values of a and 7: These results lend suppon to the assumption we have made 
in deriving equation (12). Numerical simulations on the fully connected model 
described below indicate that the correlation measured by the quantity 7)1 lies 
somewhere in between the maximal value, + I ,  and the minimal value, m i .  Thus, we 
expect the limit cycle model to show some increase in the storage capacity and the 
retrieval overlaps over the dilute Hopfield model, the improvement being somewhat 
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smaller than that shown in figure 3. We note that the result, equation (18), for a,,,(A) 
remains valid as long as the overlap q(f , ,  7) goes to zero as mo+O. 

4. Simulation results for the fully connected model 

The analytic calculation on the dilute model provides an indication of what kind of 
behaviour is expected from the fully connected model exhibiting limit cycles. In order 
to determine whether the qualitative behaviour of the fully connected model is similar 
to that of the dilute model, we have carried out a number of numerical simulations 
on the model defined in  equation (2). The main results obtained from these simulations 
are described below. 

The first question we addressed in the simulation study is whether the fully connected 
model exhibits stable cyclic behaviour for sufficiently large values of a if the control 
parameter A is less than unity. In these simulations, we used the asynchronous 
deterministic update rule defined in equation (1). As large finite-size effects were found 
to be present, the behaviour of the network was simulated for three different sizes, 
N =40, 100 and 200. The value of A was set at 0.8 and four different values of a 
(a = 0.05, 0.1, 0.15 and 0.2) were studied. The initial configuration of the network at 
time f = O  was taken to be one of the memory states {(p} and configurations at earlier 
times were assumed to be random. The time evolution of the network for I > 0 was 
simulated for a few hundred time units where a time unit corresponds to one attempted 
update per spin. The number of such runs made for each value of a was 375 for 
N = 40,225 for N = 100 and 200 for N = 200. The results obtained from these simula- 
tions are summarized in table 1. The first row shows the percentage of failures where 
a particular run is considered to be a failure if it does not show the expected periodic 
behaviour. It is clear from the numbers that for a (0.05, the network does not exhibit 
any cyclic behaviour. For a = 0.15 and 0.2, the percentage of failures decreases rapidly 
as N increases, indicating that these values of a are larger than amin, the minimum 
value of a needed for a periodic time evolution. For a = 0.1, the percentage of failures 

Table 1. Percentage of failure (first raw) and peak positions of  the distributions of the 
absolute values of  the largest Fourier components of " Y r )  (second row) and "'(I), 
+ # w o  (third row) are shown for N =200, 100 and 40 with values of OL =0.2, 0.15, 0.1 
and 0.05. 

Memory loading level (a1 

N 0.2 0.15 0.1 0.0s 

200 Failure (%I 
p 
8' 

g'v 

Zfl 

e" 
8' 

100 Failure (%I 

40 Failure (%) 

48 
70 80 
20 20 

44 70 
65 70 
30 30 

74 95 
60 55 
60 60 

6 91.5 100 
100 - 
20 - 

96.5 I O 0  
90 - 
30 - 

100 - 
- - 
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decreases slowly with increasing N, but remains large for N = 200. From these observa- 
tions we conclude that the fully connected network with A = 0.8 exhibits a cyclic 
behaviour if a > a,;,=O.I. This value of a,,,;" is close to the analytic result obtained 
for the dilute model. In figure 4, we have shown the time evolution of the overlap, 
m F ' ( l ) ,  of the spin configuration at time 1 with the original memory state for N = 200, 
A = 0.8, T = IO time units and two different values, 0.1 and 0.2, of a. The curves shown 
were obtained by averaging over all the runs exhibiting cycles. The qualitative behaviour 
of mr"(r) is found to be similar to that seen in the dilute model (see figure I ) .  For 
both values of a, the amplitude of oscillations of m""(1) initially decreases with time, 
eventually settling down to a constant value (this has been checked by performing 
longer runs). The asymptotic value mp of the amplitude decreases as a increases. The 
values of m p  obtained for the fully connected model are considerably smaller than 
those for the dilute model at the same values of A and a. This observation suggests 
that the value, amax(A), of a at which m6' goes to zero in the fully connected model 
is much smaller than that calculated for the dilute model. We did not attempt to 
determine ",,(A) precisely from the simulations because such a calculation would 
require very long runs. We believe that the question of whether the amplitude of 
oscillations goes to zero at very long times is not a particularly important one  because 
most of the computations to h e  performed by the network (such as the ones described 
below) require persistence of oscillations with a substantial amplitude for a few (-10) 
time periods. 

The fact that the network exhibits a cyclic behaviour for a > a,;,(A) does not 
necessarily imply that the cycle the network gets into is a true 'memory cycle'. By a 
memory cycle, we mean one in which the amplitude, m p ,  of oscillations of the overlap 
with the original memory state p,, is large and the amplitudes m r ,  p # po associated 
with overlaps with all other memory states are substantially smaller. This is to be 
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time 
Figure 4. Time evol~tion o f  the overlap, mP,,(r), between the %ate of the ne1work at inslant 
r and [he original memory smte for a fully connected network with N =ZOO. A =0.8 and 
U =0.1 (full curve) and 0.2 (broken C U T Y C ) .  Each time unit corresponds to one attempted 
spin Rip per spin. 
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contrasted with a ‘spurious cycle’ in which the network oscillates in a state which is 
not strongly correlated with the initial memory state. In such a spurious cycle, the 
amplitude of  the overlap with the original pattern may be smaller than that of the 
overlap with some other pattern. So, we operationally defined a spurious cyclic state 
as one in which the amplitude m p  is not the largest one among the set {m;}. I n  order 
to obtain a quantitative measure of the probability of occurrence of spurious cycles, 
we calculated the Fourier transforms, ( f ” ( w ) } ,  of the overlaps ( m ” ( f ) }  for each run. 
The Fourier amplitudes were defined as 

M 

f ” ( w )  = 1 m’(nAt)  exp(iwnAt) (19) 
n = t  

where the frequency w takes the discrete values w =2.r r j lMAt ,  j =  1,2, 
calculation, we took M = 256 and set the value of At at 0.5 time unit. For each memory 

v i .  We denote by g’ the value of fW(wmar)  and consider a cycle to be spurious if 
one or  more g’% with f i  # fi0 have values larger than g””. We find that for N = 200, 
A =0.8 and a = 0.1 -0.20, the fraction of runs in which the cycle the system gets into 
turns out to be a spurious one according to the criterion described above is less than 
10%. The fraction of runs showing spurious cycles decreases rapidly as N increases, 
indicating that the probability of getting into a spurious cycle would go to zero in the 
large-N limit for these values of a if the starting configuration coincides with one of 
the memory states. This network, thus, is able to retain the ‘memory’ of the initial state 
if it is started off in one of the stored configurations. 

In order to obtain a quantitative measure of the degree of discrimination between 
the original memory state and other stored memories, we separately calculated the 

obtained for N =  200, a = 0.15 and A =0.8. The two distributions are found to be well 
separated with little overlap, showing that the network is able to discriminate quite 
effectively between the original and other memories. I n  the second and third rows of 

fi , ihe disiri‘iuiion o f f Y ( W j  wBs Fourid io have sharp a frequency = w,,,= 

distrib.tians O f f ”  and g’, p # + L G ~  !n figure 5, we have shown these two distributions 

0.4 

Figure 5. Dislribulionr of the absolute values o f  the ldrgcbt Fouiier components o l  the 
overlaps mP,( r )  (dotted lines) and m r ( t ) ,  w#pp, ,  (full liner) for N = 2 0 0 ,  CI =0.15 and 
A =0.8. The well-separated distributions indicate that  the network cycles in the original 
pattern most of the time. 
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table 1, we have given the values of the peak positions of the distributions of g h  and 
g', p f po for A = 0.8 and different values of N and a. For a fixed value of a in the 
interval 0.1 < a  < 0.20, the position of the peak of the g+" distribution moves to higher 
values as N increases. This observation tells us that the oscillations of the overlap 
with the original memory state would become more pronounced i n  the large- N limit. 
The peak position of the g' distribution, on the other hand, is found to move to lower 
values with increasing N. Thus, the separation between the peaks of the two distribu- 
Lgutla, w1I1c1i is a iiiea~iiie of the d e p e  of disciimkiatior. achieved bjj :hi network, 
increases with N. From these observations, we conclude that this network would show 
the desired memory cycle behaviour in the large-N limit for A = 0.8 and 0.1 i U ~ 0 . 2 0 .  
The results shown in table 1 also indicate that the degree of discrimination between 
the initial and other memory states decreases, as expected, with increasing a for fixed 
values of N and A. 

We have zlso czrried n-t similar simdations fer vzlces of h greater than o x .  %le 
find a,,,=O for A > I ,  as expected. The time evolution of the network is found to be 
qualitatively similar to that described above. Quantitatively, we find that the perform- 
ance of the network improves as A is increased above one. For example, for A = 1.5, 
N = 200 and 0.05 < a < 0.20, true memory cycle behaviour is found in all runs. For a 
given value of a, both the peak position of the gw" distribution (which is a measure 
of!he amp!itde of osd!!ztions of!he over!ap wi!h !he origin.! memory s!~te) and the 
separation between the peaks of the g"0 and g' distributions (which is a measure of 
the ability of the network to discriminate between memorized patterns) are found to 
increase with A. The analytic results obtained in the preceding section suggest that the 
maximum storage capacity of the network begins to decrease as A is increased beyond 
one. Thus, a value of A close to but greater than unity should be optimal for this network. 

The results described above suggest that the maximum storage capacity of the 
present network for A > 1 is higher than that of the Hopfield network which is known 
(Amit et al 1987) to function as an associative memory if the value of a is less than 
a,=0.15. As discussed earlier in this section, an increase in the storage capacity is to 
be expected if the configurations at times to and ( l o -  T )  are not very strongly correlated. 
Here, as before, the time f o  corresponds to the peak of me<'( 1 )  in the steady state. In 
order to determine if this is indeed the case, we calculated the correlation q ( f n ,  T )  

defined earlier in the steady state from the spin configurations generated in the 
simulations. The observed values of lq ( to ,  T)[ were found to lie between the maximal 
and the minimal values, 1 and (mp)*, respectively. For example, for N = 200, A = 1.2, 
and a =0.15, the steady-state value of 141 is 0.7, whereas the value of (mp)' is close 
to 0.35. Thus, the configurations at times I, and ( t0-7)  are not maximally correlated, 
but they are more correlated than two random configuration having overlaps imp 
with the target pattern pLu. An increase in the storage capacity is, therefore, plausible. 
However, we should note that the numerical evidence indicating that a,.,(A) > 0.2 for 
A close to unity is not quite conclusive. Longer runs with larger samples would be 
necessary for an accurate determination of a,,,JA). 

The observation that amaX(A) may be higher than the maximum storage capacity, 
a,, of the Hopfield model does not mean that the model with individual memories 
stored in limit cycles performs better than the Hopfield model as an associative memory. 
This is because the quality of retrieval in the present model, measured by the value 
of the amplitude mp, is not very good for values of a close to or  higher than a,. For 
example, the value of m p  for A = 1.5, a =0.15 is found to be 10.75 in  our simulations 
whereas in the Hopfield model, the overlap with the target pattern is known to remain 
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close to unity all the way up to a,. The fact that the model with cycles is able to 
discriminate between the target pattern and other stored patterns at values of a greater 
than ac suggests that this model may be more useful than the Hopfield model as a 
pattern classifier at relatively high levels of memory loading. In order to investigate 
this aspect, we carried out a number of simulations in which the state of the network 
at t = 0 was taken to be a randomly corrupted version of one of the memory states. 
The degree of corruption of the input state was measured by the fraction, C, of bits 
which are different from the corresponding ones in the target memory state. Thus, the 
overlap, mu"( t = O), of the corrupted input with the target pattern was equal to ( I  - 2C). 
Simulations were performed for N = 200, A = 1.5, a = 0.15 and 0.2, and several values 
of C ranging from 0 to 0.3. For each run, the largest Fourier amplitudes {g"} were 
calculated. The input pattern was considered to be classified correctly if the amplitude 
gw" for the overlap with the target pattern was found to be larger than all other g's. 
The results obtained from 200 runs for each set of values of the parameters are shown 
in table 2 where the fractions of successful runs (i.e. runs in which the input was 
classified correctly) for various values of the degree of corruption C are given. For 
comparison, we have also shown in the same table similar results obtained for an 
N = 200 Hopfield model. In the Hopfield model simulations, a corrupted input was 
considered to be classified correctly if the overlap of the final stable state reached by 
the network with the target pattern was found to be larger than the overlaps with all 
other stored patterns. It is readily seen from table 2 that the model with cycles performs 
better than the Hopfield model as a pattern classifier. The improvement is more 
substantial for a =0.2. This is partly due to the fact that this value of a is above the 
critical value, a,=0.15, for the Hopfield model, but below the apparent maximum 
storage capacity of the limit cycle model. The difference between the performance of 
the two models is most pronounced at somewhat high degrees of corruption, C - 20%. 
This observation suggests that the problem of getting stuck in a spurious attractor, 
which is present in varying degrees in most neural network models of memory, is less 
severe in the limit cycle model than in the original Hopfield model. A similar reduction 
in the probability of the system getting trapped into a spurious attractor was recently 
observed by Mori er al (1989) in a model in  which groups of memories are stored in 

Table 2. Fraction of runs showing correct classification far different  value^ of the degree 
of corruption C for P network of200 neurons embedded with cycles far e = O . I S  and 0.2. 
Similar results for a N = Z O O  Hopfield model for the same values o f  C and U are also 
shown for comparison. 

Fraction of runs showing 
Degree of correct classification (%) 

Memory loading corruption C 
b e l  (e) (%I  Limit cycle Hopfield model 

0.15 10 
20 

IO0 
97 

96 
84 

2 s  90 76 
30 19 70 

0.20 I O  I00 87 
20 
25 

86 
14 

69 
62 

30 62 52 
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limit cycles. Thus this properly appears to be common to all neural network models 
in which the relevant attractors are limit cycles rather than fixed points. This, we 
believe, is an important result because the presence of spurious attractors is one of 
the major difficulties one encounters in neural network modelling. Our results suggest 
that this problem may be alleviated to some extent by using limit cycles instead of 
fixed points as relevant attractors. The origin of this effect is not fully understood. 
According to Mori et ul (1989), the reduced tendency for trapping in spurious attractors 
in their model results from a 'dynamic annealing' effect of interchange of patterns 
belonging to the same cycle. In the present model, the reduction of the probability of 
getting stuck in spurious attractors is probably caused by the fact that typical spin 
configurations separated by the time delay are not perfectly correlated. Let us consider 
the local field acting on the ith spin at time I,. It is obvious from equation (2) that 
this local field h j ( t o )  would be simply ( 1  + A )  times the local field in the Hopfield model 
( A  =0) if the spin configurations (Uj(?")} and {u,(fo- r ) }  are maximally correlated (i.e. 
uj( Io) = -ut( fo- T )  for all i). Therefore, if the configuration {uj(fu)} happens to be a 
spurious stable state of the Hopfield model (i.e. U!( to) Z, J p i (  fa) > 0 for all i), then it 
would be a stable configuration of the limit cycle model also. The system would then 
stay in this configuration for some time -T, and then make a transition to the 
complement state, thus producing a spurious cycle. If, on the other hand, the configur- 
ations (ug(ro)) and {u,(to- T)] are, as observed in the simulations, not perfectly corre- 
lated, then some of the uj( t o -  T ) S  would be different from the corresponding -ui(to)s. 
As a result, there would be some probability of the state (uj(to)} not being a stable 
one for the A # 0 model, especially if A is large and the spurious state being considered 
is a shallow one. This effect, which is somewhat similar to that of thermal noise in 
aiding the escape from shallow spurious energy minima in Hopfield-like models, is 
probably the reason behind the reduction in  the number of spurious attractors in the 
limit cycle model. 

5. Summary and conclusions 

In this paper, we have used analytic and numerical methods to study the properties 
of a class of neural network models of associative memory in  which a time delay 
mechanism is used to store individual memories in limit cycles. The main objective 
was to analyse the general behaviour of memory models which use limit cycle attractors, 
and to compare the behaviour of such models with that of Hopfield-type models in 
which the relevant attractors are fixed points. Analytic studies of an asymmetrically 
diluted version of the limit cycle model shows some improvements in performance 
over a similarly diluted version of the Hopfield model. Both the storage capacity and 
the retrieval overlap are found to be higher in  the model with limit cycles. Numerical 
simulations of the fully connected model also indicate an increase in  the storage 
capacity over the Hopfield model. However, the quality of retrieval in this model for 
values of the memory loading parameter a close to the critical value a, for the Hopfield 
model is worse than that in the Hopfield model. The limit cycle model is found to 
perform better than the Hopfield model as a pattern classifier if the value of a and 
the degree of corruption of the input pattern are high. We have found some evidence 
indicating that the problem of convergence to spurious attractors is less severe in the 
limit cycle model. 

Neural networks exhibiting limit cycles have generated a lot of interest among 
neurobiologists as possible models for central pattern generators, which are groups Of 
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specialized neurons responsible for rythmic motor activities such as respiration, beating 
of the heart and locomotion (Kristan 1980). The models studied in this paper may be 
relevant in this context (Kleinfeld and Sompolinsky 1988). 
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